Cybersecurity Notes
MathematicsCryptography
  • Cybersecurity Notes
  • Binary Exploitation
    • Stack
      • Introduction
      • ret2win
      • De Bruijn Sequences
      • Shellcode
      • NOPs
      • 32- vs 64-bit
      • No eXecute
      • Return-Oriented Programming
        • Calling Conventions
        • Gadgets
        • Exploiting Calling Conventions
        • ret2libc
        • Stack Alignment
      • Format String Bug
      • Stack Canaries
      • PIE
        • Pwntools, PIE and ROP
        • PIE Bypass with Given Leak
        • PIE Bypass
      • ASLR
        • ASLR Bypass with Given Leak
        • PLT and GOT
        • ret2plt ASLR bypass
      • GOT Overwrite
        • Exploiting a GOT overwrite
      • RELRO
      • Reliable Shellcode
        • ROP and Shellcode
        • Using RSP
        • ret2reg
          • Using ret2reg
      • One Gadgets and Malloc Hook
      • Syscalls
        • Exploitation with Syscalls
        • Sigreturn-Oriented Programming (SROP)
          • Using SROP
      • ret2dlresolve
        • Exploitation
      • ret2csu
        • Exploitation
        • CSU Hardening
      • Exploiting over Sockets
        • Exploit
        • Socat
      • Forking Processes
      • Stack Pivoting
        • Exploitation
          • pop rsp
          • leave
    • Heap
      • Introduction to the Heap
      • Chunks
      • Freeing Chunks and the Bins
        • Operations of the Fastbin
        • Operations of the Other Bins
      • Malloc State
      • malloc_consolidate()
      • Heap Overflow
        • heap0
        • heap1
      • Use-After-Free
      • Double-Free
        • Double-Free Protections
        • Double-Free Exploit
      • Unlink Exploit
      • The Tcache
        • Tcache: calloc()
        • Tcache Poisoning
      • Tcache Keys
      • Safe Linking
    • Kernel
      • Introduction
      • Writing a Char Module
        • An Interactive Char Driver
        • Interactivity with IOCTL
      • A Basic Kernel Interaction Challenge
      • Compiling, Customising and booting the Kernel
      • Double-Fetch
        • Double-Fetch without Sleep
      • The Ultimate Aim of Kernel Exploitation - Process Credentials
      • Kernel ROP - ret2usr
      • Debugging a Kernel Module
      • SMEP
        • Kernel ROP - Disabling SMEP
        • Kernel ROP - Privilege Escalation in Kernel Space
      • SMAP
      • modprobe_path
      • KASLR
      • KPTI
    • Browser Exploitation
      • *CTF 2019 - oob-v8
        • The Challenge
      • picoCTF 2021 - Kit Engine
      • picoCTF 2021 - Download Horsepower
  • Reverse Engineering
    • Strings in C++
    • C++ Decompilation Tricks
    • Reverse Engineering ARM
  • Blockchain
    • An Introduction to Blockchain
  • Smart Contracts and Solidity
  • Hosting a Testnet and Deploying a Contract
  • Interacting with Python
  • Writeups
    • Hack The Box
      • Linux Machines
        • Easy
          • Traceback
        • Medium
          • Magic
          • UpDown
        • Hard
          • Intense
      • Challenges
        • Web
          • Looking Glass
          • Sanitize
          • Baby Auth
          • Baby Website Rick
        • Pwn
          • Dream Diary: Chapter 1
            • Unlink Exploit
            • Chunk Overlap
          • Ropme
    • picoGym
      • Cryptography
        • Mod 26
        • Mind Your Ps and Qs
        • Easy Peasy
        • The Numbers
        • New Caesar
        • Mini RSA
        • Dachshund Attacks
        • No Padding, No Problem
        • Easy1
        • 13
        • Caesar
        • Pixelated
        • Basic-Mod1
        • Basic-Mod2
        • Credstuff
        • morse-code
        • rail-fence
        • Substitution0
        • Substitution1
        • Substitution2
        • Transposition-Trial
        • Vigenere
        • HideToSee
    • CTFs
      • Fword CTF 2020
        • Binary Exploitation
          • Molotov
        • Reversing
          • XO
      • X-MAS CTF 2020
        • Pwn
          • Do I Know You?
          • Naughty
        • Web
          • PHP Master
      • HTB CyberSanta 2021
        • Crypto
          • Common Mistake
          • Missing Reindeer
          • Xmas Spirit
          • Meet Me Halfway
  • Miscellaneous
    • pwntools
      • Introduction
      • Processes and Communication
      • Logging and Context
      • Packing
      • ELF
      • ROP
    • scanf Bypasses
    • Challenges in Containers
    • Using Z3
    • Cross-Compiling for arm32
Powered by GitBook
On this page

Was this helpful?

Export as PDF
  1. Writeups
  2. picoGym
  3. Cryptography

Mini RSA

What happens if you have a small exponent? There is a twist though, we padded the plaintext so that (M ** e) is just barely larger than N. Let's decrypt this: ciphertext

Last updated 4 months ago

Was this helpful?

Now we're getting onto proper cryptography. Here we are told that we are using RSA with a small exponent, but MeM^eMe is just more than NNN. This means we can't quite do a and taking the cube root until we get the flag. As it is close, it's not infeasible to brute force. I use gmpy2's iroot function to take the cube root.

from Crypto.Util.number import long_to_bytes
from gmpy2 import iroot

N = 1615765684321463054078226051959887884233678317734892901740763321135213636796075462401950274602405095138589898087428337758445013281488966866073355710771864671726991918706558071231266976427184673800225254531695928541272546385146495736420261815693810544589811104967829354461491178200126099661909654163542661541699404839644035177445092988952614918424317082380174383819025585076206641993479326576180793544321194357018916215113009742654408597083724508169216182008449693917227497813165444372201517541788989925461711067825681947947471001390843774746442699739386923285801022685451221261010798837646928092277556198145662924691803032880040492762442561497760689933601781401617086600593482127465655390841361154025890679757514060456103104199255917164678161972735858939464790960448345988941481499050248673128656508055285037090026439683847266536283160142071643015434813473463469733112182328678706702116054036618277506997666534567846763938692335069955755244438415377933440029498378955355877502743215305768814857864433151287
e = 3

c = 1220012318588871886132524757898884422174534558055593713309088304910273991073554732659977133980685370899257850121970812405700793710546674062154237544840177616746805668666317481140872605653768484867292138139949076102907399831998827567645230986345455915692863094364797526497302082734955903755050638155202890599808147130204332030239454609548193370732857240300019596815816006860639254992255194738107991811397196500685989396810773222940007523267032630601449381770324467476670441511297695830038371195786166055669921467988355155696963689199852044947912413082022187178952733134865103084455914904057821890898745653261258346107276390058792338949223415878232277034434046142510780902482500716765933896331360282637705554071922268580430157241598567522324772752885039646885713317810775113741411461898837845999905524246804112266440620557624165618470709586812253893125417659761396612984740891016230905299327084673080946823376058367658665796414168107502482827882764000030048859751949099453053128663379477059252309685864790106


for i in range(10_000):
    c_try = c + i * N
    m = int(iroot(c_try, 3)[0])
    flag = long_to_bytes(m)

    if b'pico' in flag:
        print(flag)

# picoCTF{e_sh0u1d_b3_lArg3r_7adb35b1}
cube-root attack, but because it is just more than MMM we can actually keep on adding multiples of NNN onto ccc