Cybersecurity Notes
MathematicsCryptography
  • Cybersecurity Notes
  • Binary Exploitation
    • Stack
      • Introduction
      • ret2win
      • De Bruijn Sequences
      • Shellcode
      • NOPs
      • 32- vs 64-bit
      • No eXecute
      • Return-Oriented Programming
        • Calling Conventions
        • Gadgets
        • Exploiting Calling Conventions
        • ret2libc
        • Stack Alignment
      • Format String Bug
      • Stack Canaries
      • PIE
        • Pwntools, PIE and ROP
        • PIE Bypass with Given Leak
        • PIE Bypass
      • ASLR
        • ASLR Bypass with Given Leak
        • PLT and GOT
        • ret2plt ASLR bypass
      • GOT Overwrite
        • Exploiting a GOT overwrite
      • RELRO
      • Reliable Shellcode
        • ROP and Shellcode
        • Using RSP
        • ret2reg
          • Using ret2reg
      • One Gadgets and Malloc Hook
      • Syscalls
        • Exploitation with Syscalls
        • Sigreturn-Oriented Programming (SROP)
          • Using SROP
      • ret2dlresolve
        • Exploitation
      • ret2csu
        • Exploitation
        • CSU Hardening
      • Exploiting over Sockets
        • Exploit
        • Socat
      • Forking Processes
      • Stack Pivoting
        • Exploitation
          • pop rsp
          • leave
    • Heap
      • Introduction to the Heap
      • Chunks
      • Freeing Chunks and the Bins
        • Operations of the Fastbin
        • Operations of the Other Bins
      • Malloc State
      • malloc_consolidate()
      • Heap Overflow
        • heap0
        • heap1
      • Use-After-Free
      • Double-Free
        • Double-Free Protections
        • Double-Free Exploit
      • Unlink Exploit
      • The Tcache
        • Tcache: calloc()
        • Tcache Poisoning
      • Tcache Keys
      • Safe Linking
    • Kernel
      • Introduction
      • Writing a Char Module
        • An Interactive Char Driver
        • Interactivity with IOCTL
      • A Basic Kernel Interaction Challenge
      • Compiling, Customising and booting the Kernel
      • Double-Fetch
        • Double-Fetch without Sleep
      • The Ultimate Aim of Kernel Exploitation - Process Credentials
      • Kernel ROP - ret2usr
      • Debugging a Kernel Module
      • SMEP
        • Kernel ROP - Disabling SMEP
        • Kernel ROP - Privilege Escalation in Kernel Space
      • SMAP
      • modprobe_path
      • KASLR
      • KPTI
    • Browser Exploitation
      • *CTF 2019 - oob-v8
        • The Challenge
      • picoCTF 2021 - Kit Engine
      • picoCTF 2021 - Download Horsepower
  • Reverse Engineering
    • Strings in C++
    • C++ Decompilation Tricks
    • Reverse Engineering ARM
  • Blockchain
    • An Introduction to Blockchain
  • Smart Contracts and Solidity
  • Hosting a Testnet and Deploying a Contract
  • Interacting with Python
  • Writeups
    • Hack The Box
      • Linux Machines
        • Easy
          • Traceback
        • Medium
          • Magic
          • UpDown
        • Hard
          • Intense
      • Challenges
        • Web
          • Looking Glass
          • Sanitize
          • Baby Auth
          • Baby Website Rick
        • Pwn
          • Dream Diary: Chapter 1
            • Unlink Exploit
            • Chunk Overlap
          • Ropme
    • picoGym
      • Cryptography
        • Mod 26
        • Mind Your Ps and Qs
        • Easy Peasy
        • The Numbers
        • New Caesar
        • Mini RSA
        • Dachshund Attacks
        • No Padding, No Problem
        • Easy1
        • 13
        • Caesar
        • Pixelated
        • Basic-Mod1
        • Basic-Mod2
        • Credstuff
        • morse-code
        • rail-fence
        • Substitution0
        • Substitution1
        • Substitution2
        • Transposition-Trial
        • Vigenere
        • HideToSee
    • CTFs
      • Fword CTF 2020
        • Binary Exploitation
          • Molotov
        • Reversing
          • XO
      • X-MAS CTF 2020
        • Pwn
          • Do I Know You?
          • Naughty
        • Web
          • PHP Master
      • HTB CyberSanta 2021
        • Crypto
          • Common Mistake
          • Missing Reindeer
          • Xmas Spirit
          • Meet Me Halfway
  • Miscellaneous
    • pwntools
      • Introduction
      • Processes and Communication
      • Logging and Context
      • Packing
      • ELF
      • ROP
    • scanf Bypasses
    • Challenges in Containers
    • Using Z3
    • Cross-Compiling for arm32
Powered by GitBook
On this page

Was this helpful?

Export as PDF
  1. Binary Exploitation
  2. Kernel

SMAP

Supervisor Memory Access Protection

Last updated 11 months ago

Was this helpful?

SMAP is a more powerful version of SMEP. Instead of preventing code in user space from being accessed, SMAP places heavy restrictions on accessing user space at all, even for accessing data. SMAP blocks the kernel from even dereferencing (i.e. accessing) data that isn't in kernel space unless it is a set of very specific functions.

For example, functions such as strcpy or memcpy do not work for copying data to and from user space when SMAP is enabled. Instead, we are provided the functions copy_from_user and copy_to_user, which are allowed to briefly bypass SMAP for the duration of their operation. These functions also have additional hardening against attacks such as buffer overflows, with the function __copy_overflow acting as a guard against them.

This means that whether you interact using write/read or ioctl, the structs that you pass via pointers all get copied to kernel space using these functions before they are messed around with. This also means that double-fetches are even more unlikely to occur as all operations are based on the snapshot of the data that the module took when copy_from_user was called (unless copy_from_user is called on the same struct multiple times).

Like SMEP, SMAP is controlled by the CR4 register, in this case the 21st bit. It is also , so overwriting CR4 does nothing, and instead we have to work around it. There is no specific "bypass", it will depend on the challenge and will simply have to be accounted for.

Enabling SMAP is just as easy as SMEP:

    -cpu qemu64,+smep,+smap
pinned