Cybersecurity Notes
MathematicsCryptography
  • Cybersecurity Notes
  • Binary Exploitation
    • Stack
      • Introduction
      • ret2win
      • De Bruijn Sequences
      • Shellcode
      • NOPs
      • 32- vs 64-bit
      • No eXecute
      • Return-Oriented Programming
        • Calling Conventions
        • Gadgets
        • Exploiting Calling Conventions
        • ret2libc
        • Stack Alignment
      • Format String Bug
      • Stack Canaries
      • PIE
        • Pwntools, PIE and ROP
        • PIE Bypass with Given Leak
        • PIE Bypass
      • ASLR
        • ASLR Bypass with Given Leak
        • PLT and GOT
        • ret2plt ASLR bypass
      • GOT Overwrite
        • Exploiting a GOT overwrite
      • RELRO
      • Reliable Shellcode
        • ROP and Shellcode
        • Using RSP
        • ret2reg
          • Using ret2reg
      • One Gadgets and Malloc Hook
      • Syscalls
        • Exploitation with Syscalls
        • Sigreturn-Oriented Programming (SROP)
          • Using SROP
      • ret2dlresolve
        • Exploitation
      • ret2csu
        • Exploitation
        • CSU Hardening
      • Exploiting over Sockets
        • Exploit
        • Socat
      • Forking Processes
      • Stack Pivoting
        • Exploitation
          • pop rsp
          • leave
    • Heap
      • Introduction to the Heap
      • Chunks
      • Freeing Chunks and the Bins
        • Operations of the Fastbin
        • Operations of the Other Bins
      • Malloc State
      • malloc_consolidate()
      • Heap Overflow
        • heap0
        • heap1
      • Use-After-Free
      • Double-Free
        • Double-Free Protections
        • Double-Free Exploit
      • Unlink Exploit
      • The Tcache
        • Tcache: calloc()
        • Tcache Poisoning
      • Tcache Keys
      • Safe Linking
    • Kernel
      • Introduction
      • Writing a Char Module
        • An Interactive Char Driver
        • Interactivity with IOCTL
      • A Basic Kernel Interaction Challenge
      • Compiling, Customising and booting the Kernel
      • Double-Fetch
        • Double-Fetch without Sleep
      • The Ultimate Aim of Kernel Exploitation - Process Credentials
      • Kernel ROP - ret2usr
      • Debugging a Kernel Module
      • SMEP
        • Kernel ROP - Disabling SMEP
        • Kernel ROP - Privilege Escalation in Kernel Space
      • SMAP
      • modprobe_path
      • KASLR
      • KPTI
    • Browser Exploitation
      • *CTF 2019 - oob-v8
        • The Challenge
      • picoCTF 2021 - Kit Engine
      • picoCTF 2021 - Download Horsepower
  • Reverse Engineering
    • Strings in C++
    • C++ Decompilation Tricks
    • Reverse Engineering ARM
  • Blockchain
    • An Introduction to Blockchain
  • Smart Contracts and Solidity
  • Hosting a Testnet and Deploying a Contract
  • Interacting with Python
  • Writeups
    • Hack The Box
      • Linux Machines
        • Easy
          • Traceback
        • Medium
          • Magic
          • UpDown
        • Hard
          • Intense
      • Challenges
        • Web
          • Looking Glass
          • Sanitize
          • Baby Auth
          • Baby Website Rick
        • Pwn
          • Dream Diary: Chapter 1
            • Unlink Exploit
            • Chunk Overlap
          • Ropme
    • picoGym
      • Cryptography
        • Mod 26
        • Mind Your Ps and Qs
        • Easy Peasy
        • The Numbers
        • New Caesar
        • Mini RSA
        • Dachshund Attacks
        • No Padding, No Problem
        • Easy1
        • 13
        • Caesar
        • Pixelated
        • Basic-Mod1
        • Basic-Mod2
        • Credstuff
        • morse-code
        • rail-fence
        • Substitution0
        • Substitution1
        • Substitution2
        • Transposition-Trial
        • Vigenere
        • HideToSee
    • CTFs
      • Fword CTF 2020
        • Binary Exploitation
          • Molotov
        • Reversing
          • XO
      • X-MAS CTF 2020
        • Pwn
          • Do I Know You?
          • Naughty
        • Web
          • PHP Master
      • HTB CyberSanta 2021
        • Crypto
          • Common Mistake
          • Missing Reindeer
          • Xmas Spirit
          • Meet Me Halfway
  • Miscellaneous
    • pwntools
      • Introduction
      • Processes and Communication
      • Logging and Context
      • Packing
      • ELF
      • ROP
    • scanf Bypasses
    • Challenges in Containers
    • Using Z3
    • Cross-Compiling for arm32
Powered by GitBook
On this page

Was this helpful?

Export as PDF
  1. Writeups
  2. CTFs
  3. HTB CyberSanta 2021
  4. Crypto

Common Mistake

Common Mod, DIfferent e

Last updated 4 months ago

Was this helpful?

In this challenge, we are given two sets of NNN, eee and ccc.

{'n': '0xa96e6f96f6aedd5f9f6a169229f11b6fab589bf6361c5268f8217b7fad96708cfbee7857573ac606d7569b44b02afcfcfdd93c21838af933366de22a6116a2a3dee1c0015457c4935991d97014804d3d3e0d2be03ad42f675f20f41ea2afbb70c0e2a79b49789131c2f28fe8214b4506db353a9a8093dc7779ec847c2bea690e653d388e2faff459e24738cd3659d9ede795e0d1f8821fd5b49224cb47ae66f9ae3c58fa66db5ea9f73d7b741939048a242e91224f98daf0641e8a8ff19b58fb8c49b1a5abb059f44249dfd611515115a144cc7c2ca29357af46a9dc1800ae9330778ff1b7a8e45321147453cf17ef3a2111ad33bfeba2b62a047fa6a7af0eef', 'e': '0x10001', 'ct': '0x55cfe232610aa54dffcfb346117f0a38c77a33a2c67addf7a0368c93ec5c3e1baec9d3fe35a123960edc2cbdc238f332507b044d5dee1110f49311efc55a2efd3cf041bfb27130c2266e8dc61e5b99f275665823f584bc6139be4c153cdcf153bf4247fb3f57283a53e8733f982d790a74e99a5b10429012bc865296f0d4f408f65ee02cf41879543460ffc79e84615cc2515ce9ba20fe5992b427e0bbec6681911a9e6c6bbc3ca36c9eb8923ef333fb7e02e82c7bfb65b80710d78372a55432a1442d75cad5b562209bed4f85245f0157a09ce10718bbcef2b294dffb3f00a5a804ed7ba4fb680eea86e366e4f0b0a6d804e61a3b9d57afb92ecb147a769874'}
{'n': '0xa96e6f96f6aedd5f9f6a169229f11b6fab589bf6361c5268f8217b7fad96708cfbee7857573ac606d7569b44b02afcfcfdd93c21838af933366de22a6116a2a3dee1c0015457c4935991d97014804d3d3e0d2be03ad42f675f20f41ea2afbb70c0e2a79b49789131c2f28fe8214b4506db353a9a8093dc7779ec847c2bea690e653d388e2faff459e24738cd3659d9ede795e0d1f8821fd5b49224cb47ae66f9ae3c58fa66db5ea9f73d7b741939048a242e91224f98daf0641e8a8ff19b58fb8c49b1a5abb059f44249dfd611515115a144cc7c2ca29357af46a9dc1800ae9330778ff1b7a8e45321147453cf17ef3a2111ad33bfeba2b62a047fa6a7af0eef', 'e': '0x23', 'ct': '0x79834ce329453d3c4af06789e9dd654e43c16a85d8ba0dfa443aefe1ab4912a12a43b44f58f0b617662a459915e0c92a2429868a6b1d7aaaba500254c7eceba0a2df7144863f1889fab44122c9f355b74e3f357d17f0e693f261c0b9cefd07ca3d1b36563a8a8c985e211f9954ce07d4f75db40ce96feb6c91211a9ff9c0a21cad6c5090acf48bfd88042ad3c243850ad3afd6c33dd343c793c0fa2f98b4eabea399409c1966013a884368fc92310ebcb3be81d3702b936e7e883eeb94c2ebb0f9e5e6d3978c1f1f9c5a10e23a9d3252daac87f9bb748c961d3d361cc7dacb9da38ab8f2a1595d7a2eba5dce5abee659ad91a15b553d6e32d8118d1123859208'}

The plaintext encrypted to give ccc is the same, and we can observe that the choice of NNN is also the same, meaning the only difference is in the choice of eee. Here we can use some cool maffs with e1e_1e1​ and e2e_2e2​ to retrieve the original plaintext mmm.

Firstly, if the greatest common divisor of e1e_1e1​ and e2e_2e2​ is 111, then there exists aaa and bbb such that

ae1+be2=1ae_1 + be_2 = 1ae1​+be2​=1

To calculate this, we can use the . But why is this helpful?

Well if we know that c1≡me1mod  Nc_1 \equiv m^{e_1} \mod Nc1​≡me1​modN and c2≡me2mod  Nc_2 \equiv m^{e_2} \mod Nc2​≡me2​modN and we know a,ba,ba,b such that ae1+be2=1ae_1 + be_2 = 1ae1​+be2​=1, we can then use this to calculate mmm like this:

c1a⋅c2b=(me1)a⋅(me2)b=mae1⋅mbe2=mae1+be2=m1=mc_1^a \cdot c_2^b = (m^{e_1})^a \cdot (m^{e_2})^b = m^{ae_1} \cdot m^{be_2} = m^{ae_1+be_2} = m^1 = mc1a​⋅c2b​=(me1​)a⋅(me2​)b=mae1​⋅mbe2​=mae1​+be2​=m1=m

In practise bbb is likely to be negative, and in modular arithmetic we use negative powers using the . Luckily, Sage can do this for us by default, so we can do even less steps:

from Crypto.Util.number import long_to_bytes

n = 0xa96e6f96f6aedd5f9f6a169229f11b6fab589bf6361c5268f8217b7fad96708cfbee7857573ac606d7569b44b02afcfcfdd93c21838af933366de22a6116a2a3dee1c0015457c4935991d97014804d3d3e0d2be03ad42f675f20f41ea2afbb70c0e2a79b49789131c2f28fe8214b4506db353a9a8093dc7779ec847c2bea690e653d388e2faff459e24738cd3659d9ede795e0d1f8821fd5b49224cb47ae66f9ae3c58fa66db5ea9f73d7b741939048a242e91224f98daf0641e8a8ff19b58fb8c49b1a5abb059f44249dfd611515115a144cc7c2ca29357af46a9dc1800ae9330778ff1b7a8e45321147453cf17ef3a2111ad33bfeba2b62a047fa6a7af0eef
e1 = 0x10001
e2 = 0x23
c1 = Mod(0x55cfe232610aa54dffcfb346117f0a38c77a33a2c67addf7a0368c93ec5c3e1baec9d3fe35a123960edc2cbdc238f332507b044d5dee1110f49311efc55a2efd3cf041bfb27130c2266e8dc61e5b99f275665823f584bc6139be4c153cdcf153bf4247fb3f57283a53e8733f982d790a74e99a5b10429012bc865296f0d4f408f65ee02cf41879543460ffc79e84615cc2515ce9ba20fe5992b427e0bbec6681911a9e6c6bbc3ca36c9eb8923ef333fb7e02e82c7bfb65b80710d78372a55432a1442d75cad5b562209bed4f85245f0157a09ce10718bbcef2b294dffb3f00a5a804ed7ba4fb680eea86e366e4f0b0a6d804e61a3b9d57afb92ecb147a769874, n)
c2 = Mod(0x79834ce329453d3c4af06789e9dd654e43c16a85d8ba0dfa443aefe1ab4912a12a43b44f58f0b617662a459915e0c92a2429868a6b1d7aaaba500254c7eceba0a2df7144863f1889fab44122c9f355b74e3f357d17f0e693f261c0b9cefd07ca3d1b36563a8a8c985e211f9954ce07d4f75db40ce96feb6c91211a9ff9c0a21cad6c5090acf48bfd88042ad3c243850ad3afd6c33dd343c793c0fa2f98b4eabea399409c1966013a884368fc92310ebcb3be81d3702b936e7e883eeb94c2ebb0f9e5e6d3978c1f1f9c5a10e23a9d3252daac87f9bb748c961d3d361cc7dacb9da38ab8f2a1595d7a2eba5dce5abee659ad91a15b553d6e32d8118d1123859208, n)

d, a, b = xgcd(e1, e2)        # calculate a and b

m = c1^a * c2^b
print(long_to_bytes(m))

And we get the flag as HTB{c0mm0n_m0d_4774ck_15_4n07h3r_cl4ss1c}.

Extended Euclidean Algorithm
Modular Multiplicative Inverse