ret2dlresolve
Resolving our own libc functions
Broad Overview
During a ret2dlresolve, the attacker tricks the binary into resolving a function of its choice (such as system
) into the PLT. This then means the attacker can use the PLT function as if it was originally part of the binary, bypassing ASLR (if present) and requiring no libc leaks.
Detailed Overview
Dynamically-linked ELF objects import libc
functions when they are first called using the PLT and GOT. During the relocation of a runtime symbol, RIP will jump to the PLT and attempt to resolve the symbol. During this process a "resolver" is called.
For all these screenshots, I broke at read@plt
. I'm using GDB with the pwndbg
plugin as it shows it a bit better.
The PLT jumps to wherever the GOT points. Originally, before the GOT is updated, it points back to the instruction after the jmp
in the PLT to resolve it.
In order to resolve the functions, there are 3 structures that need to exist within the binary. Faking these 3 structures could enable us to trick the linker into resolving a function of our choice, and we can also pass parameters in (such as /bin/sh
) once resolved.
Structures
There are 3 structures we need to fake.
JMPREL
The JMPREL
segment (.rel.plt
) stores the Relocation Table, which maps each entry to a symbol.
These entries are of type Elf32_Rel
:
The column name
coresponds to our symbol name. The offset
is the GOT entry for our symbol. info
stores additional metadata.
Note the due to this the R_SYM
of gets
is 1
as 0x107 >> 8 = 1
.
STRTAB
Much simpler - just a table of strings for the names.
SYMTAB
Symbol information is stores here in an Elf32_Sym
struct:
The most important value here is st_name
as this gives the offset in STRTAB of the symbol name. The other fields are not relevant to the exploit itself.
Linking the Structures
We now know we can get the STRTAB
offset of the symbol's string using the R_SYM
value we got from the JMPREL
, combined with SYMTAB
:
Here we're reading SYMTAB + R_SYM * size (16)
, and it appears that the offset (the SYMTAB
st_name
variable) is 0x10
.
And if we read that offset on STRTAB
, we get the symbol's name!
More on the PLT and GOT
Let's hop back to the GOT and PLT for a slightly more in-depth look.
If the GOT entry is unpopulated, we push the reloc_offset
value and jump to the beginning of the .plt
section. A few instructions later, the dl-resolve()
function is called, with reloc_offset
being one of the arguments. It then uses this reloc_offset
to calculate the relocation and symtab entries.
Resources
Last updated